*恭喜浙江省农业科学院俞老师在SCI期刊 Environmental Science and Pollution Research(IF:2.914)上成功发表
*恭喜西安理工大学张老师,环境水利专业,文章成功发表在SCI期刊Environmental Science and Pollution Research上,IF2.914
*恭喜山东交通学院谢老师在SCI期刊APPLIED SURFACE SCIENCE(IF5.15)上成功发表
*恭喜华中科技大学黄老师在SCI期刊 ACS Applied Materials & Interfaces(IF8.456)上成功发表
*恭喜中南大学湘雅医院黄医生在Frontiers in Oncology(IF 4.137)上成功发表
*恭喜复旦大学辛博士在SCI期刊 FEBS LETTERS(IF2.675)上成功发表
*恭喜中南大学陈博士在THIN-WALLED STRUCTURESSCI期刊(IF3.488)上成功发表
*恭喜湖南工学院郭老师在SCI期刊SIMULATION MODELLING PRACTICE AND THEORY(IF2.42)上成功发表
*恭喜东华大学闫老师在SCI期刊Advanced Functional Materials(IF 15.621)上成功发表
*恭喜安徽医科大学肖老师在SCI期刊BMC CELL BIOLOGY(IF 3.485)上成功发表
*恭喜四川大学华西医院谢医生在SCI期刊European Heart Journal: Acute Cardiovascular Care(IF 3.734)上成功发表

0591-83301811

周一~周日, 8:00 - 23:00

13107667616

周一~周日, 8:00 - 23:00

service@editideas.cn

随时欢迎您的来信!

2021年最新SCI期刊影响因子查询系统

期刊名称:
ISSN:
期刊研究方向:
IF范围:
中科院分区:
SCI/SCIE:
是否OA期刊:
排列方式:

ULTRASONICS SONOCHEMISTRY 期刊详细信息

基本信息
期刊名称 ULTRASONICS SONOCHEMISTRY
ULTRASONICS SONOCHEMISTRY
期刊ISSN 1350-4177
期刊官方网站 http://www.elsevier.com/wps/find/journaldescription.cws_home/525451/description
是否OA
出版商 Elsevier
出版周期 Bimonthly
始发年份 1994
年文章数 536
最新影响因子 9.336(2021)
中科院SCI期刊分区
大类学科 小类学科 Top 综述
化学2区 ACOUSTICS 声学1区
CHEMISTRY, MULTIDISCIPLINARY 化学综合2区
CiteScore
CiteScore排名 CiteScore SJR SNIP
学科 排名 百分位 6.83 1.556 2.005
Physics and Astronomy
Acoustics and Ultrasonics
1 / 40 98%
Chemical Engineering
General Chemical Engineering
1 / 23 97%
Medicine
Radiology Nuclear Medicine and imaging
3 / 272 99%
Chemistry
Inorganic Chemistry
3 / 69 96%
Chemistry
Organic Chemistry
5 / 177 97%
Environmental Science
Environmental Chemistry
10 / 100 90%
补充信息
自引率 24.30%
H-index 93
SCI收录状况 Science Citation Index Expanded
官方审稿时间
网友分享审稿时间 数据统计中,敬请期待。
PubMed Central (PML) http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1350-4177%5BISSN%5D
投稿指南
期刊投稿网址 http://ees.elsevier.com/ultson/
收稿范围
Ultrasonics Sonochemistry is a leading international journal devoted to publishing excellent quality research articles primarily on chemical reactions and reactors induced by ultrasonic waves, namely sonochemistry. In addition to focusing on chemical reactions, Ultrasonics Sonochemistry also values contributions related to cavitation (acoustic or hydrodynamic) induced events and processing such as sonoluminescence, and chemical/physical/biological transformation of materials.
Ultrasonics Sonochemistry publishes excellent quality papers in a number of areas involving ultrasonics and sonochemistry. Since its establishment in 1994, the journal's ranking has been consistently high and currently the top ranked journal in the "Acoustics" category. Papers published in Ultrasonics Sonochemistry are highly relevant to academics and the industry sector.
Ultrasonics Sonochemistry considers high quality manuscripts for publication under the following categories: Full length research articles, Reviews and Short Communications in the research topics/areas listed below. Manuscripts reporting routine/incremental work will not be considered for publication under any category / topic.
Acoustic cavitation: Theory, bubble dynamics and fundamental work pertaining to: single and/or multiple bubbles dynamics in a fluctuating force field of pressure, light and magnetism; effect of physico-chemical properties of the gases/vapour components and also fluid properties such as surface tension, viscosity, rheology etc.; basic force and energy balance equation and models for single and multibubble systems; various analytical and numerical solutions to the equations derived in various force fields under a variety of boundary and initial conditions; algorithms for the different solution schemes for single and multiple bubble dynamics and/or their interactions; establishing links between the fundamental dynamics with microscopic/macroscopic and bulk effects, including symmetric and asymmetric bubble oscillations; cavitational intensity; spatio-temporal distribution.
Sonochemistry: Chemical and physical operating parameters influencing cavitation threshold, activity, intensity and associated effects (experimental and theoretical); chemical and physical dosimetry of cavitational activity; frequency effect on sonochemistry; single bubble sonochemistry; sonochemistry in non-cavitating conditions; reactor and probe design; scale-up.
Sonoluminescence: Single bubble sonoluminescence (SBSL); multibubble sonoluminescence (MBSL); sonochemiluminescence (SCL); cavitation bubble structures; sonophoto-luminescence (SPL); sonoluminescence quenching; effect of frequency and acoustic power on sonoluminescence; characterisation of ultrasonic reactors using sonoluminescence and/or sonochemiluminescence.
Synthesis of materials including inorganic and organic materials: Ultrasonic/ sonochemical/ultrasound-assisted synthesis of organic materials such as organic molecules, polymer materials, and supermolecular compounds; ultrasonic/sonochemical/ultrasound-assisted synthesis of inorganic materials, such as, inorganic molecules, metals, metal oxides, and ceramics and ceramic micromaterials/nanomaterials; Ultrasonic activation of synthetic reactions.
Sonoprocessing: Ultrasonic-assisted extraction of oil, bioactive compounds, natural products, antioxidant compounds etc.; Soil washing for removing soil contaminates with ultrasounds; ultrasonic/acoustic emulsification of two or more immiscible liquid phases; treatment of contaminated soil/surfaces.
Food processing: Processing of food and/or dairy systems (e.g., dairy/whey proteins; starch, polyphenols, etc.) using ultrasound; ultrasonic modification of functional properties of food/dairy systems; ultrasonic activation/deactivation of enzymes in food/dairy systems; ultrasonic deactivation of pathogens in food/dairy systems; ultrasonic extraction of functional (e.g., polyphenols, antioxidants) ingredients; large scale reactors for food processing applications; ultrasonic preparation of food emulsions.
Environmental remediation: Destruction/removal of pollutants or contaminants from soil, ground or water; influence of physical and chemical operating parameters on kinetics; elucidation of chemical pathways; Advanced Oxidation Processes (AOPs); sono-Fenton and related topics; sonocatalysis and related topics; scale-up processes.
Sonocrystallisation: Work pertaining to: effect of acoustic irradiations and turbulent velocity and pressure fluctuations on the nucleation, growth and the particle size distribution (PSD); population balance models and probabilities of particle breakage and /or agglomeration and nucleation; system properties and the effect of the same on sonication, it's propagation and alteration and hence the crystallization phenomenon; energetic (energy balance) of crystallization and the role of acoustics on the same.
Sonoelectrochemistry: Electrosynthesis of useful compounds and materials in an ultrasonic field; ultrasonic activation of electrochemical reactions; ultrasonic enhancement of detection sensitivity in electroanalysis. Detailed experimental procedure as well as mechanisms should be critically discussed. Manuscripts reporting such combined technologies without such details or constructive discussion will not be considered for publication.
Hybrid techniques: Ultrasonic coupling with other technologies (other than sonoelectrochemistry), microwave, photochemistry (sonophotocatalysis), tribochemistry, mechano-chemistry, etc.), dual and multifrequency operation at laboratory or large scale leading to enhanced efficiency. Detailed experimental procedure as well as mechanisms should be critically discussed. Manuscripts reporting such combined technologies without such details or constructive discussion will be not considered for publication.
Ultrasound in biomedical applications: Ultrasonic synthesis of microspheres/nanospheres for drug/nutrient delivery; ultrasonic/sonochemical synthesis of protein microspheres and core-shell architectures; ultrasonic/sonochemical synthesis of biomaterials. Manuscripts dealing with therapeutic/diagnostic effects of ultrasound may notbe suitable for this journal.
Hydrodynamic cavitation: Work pertaining to: cavitation in hydraulic and high fluid velocity rotary and linear velocity systems; fundamentals of cavity/bubble nucleation, growth and collapse (cavitation), under rotary machines and high speed constricted flows; experimental validation (cause and effects) of the cavitation phenomena and harnessing of the energy release; scale -up studies and industrial cavitating systems.
收录体裁
Full length research articles
Reviews 
Short Communications
投稿指南 https://www.elsevier.com/journals/ultrasonics-sonochemistry/1350-4177/guide-for-authors
投稿模板
参考文献格式 https://www.elsevier.com/journals/ultrasonics-sonochemistry/1350-4177/guide-for-authors
编辑信息
近期成功发表案例展示